Experiment 5: Focal Length of a convex Lens

* The distance between
 The point of Convergence of the light rays coming from infinity.

$$
(u=\infty)
$$

u and v are related By:

$$
\psi \frac{1}{f}=\frac{1}{u}+\frac{1}{v} *
$$

it's clear that the Graph of

* $\frac{1}{v}=\rho \frac{1}{\text { slope } u}+\frac{1}{f} \quad(1 N)$ vs $(1 / U)$ is a straight line

When $\frac{1}{v}=0 \quad \frac{1}{f}=\frac{1}{u} \quad$ so Then $f_{y}=f_{x}$
when $\frac{1}{u}=0 \quad \frac{1}{f}=\frac{1}{v}$

$$
\begin{aligned}
& \left(0, \frac{1}{u}\right) \frac{\text { intercept }}{y \text {-avis }} \\
& \left(\frac{1}{v}, 0\right) \begin{array}{l}
\text { intercept } \\
x \text {-axis }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.f=\frac{f_{x}+f_{y}}{2}\right]^{\text {Bel: }} f_{y \text { mes }}^{\text {Be }}=f_{x} \text { Tee } \\
& \frac{\Delta f}{f^{2}}=\frac{\Delta v}{v^{2}}+\frac{\Delta u}{u^{2}}
\end{aligned}
$$

